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Abstract. Quantum and classical informations are considered in quantum measurement processes
described by pure operations. The quantum information is given by coherent information in the
state change of the measured physical system, and the classical information represented by the
Shannon mutual information is obtained from the measurement outcomes. It is shown that if the
maximum classical information is obtained, the quantum information becomes zero and if any
classical information is not obtained, all the quantum information that the physical system has can
be transmitted.

When we perform a quantum measurement of a physical system to obtain some information
on a physical quantity, the quantum state of the measured system inevitably changes due to
the effects of the quantum measurement. Such a state change is equivalent to a noisy quantum
channel, both of which are described by a completely positive map [1-3]. Thus we can
consider how much quantum information is transmitted through this noisy quantum channel
induced by the quantum measurement process [4-8]. On the other hand, we can obtain the
classical information (Shannon information) on the physical quantity from the measurement
outcomes. This means that there is a communication channel from the physical system to the
measurement apparatus. Therefore a quantum measurement process has two communication
channels; one transmits quantum information of a physical system to be measured and the other
the classical information on a physical quantity. The purpose of this paper is to investigate
the information transmission in quantum measurement processes described by pure quantum
operations. In particular, it is shown that if we obtain the maximum classical information
from the measurement outcome, the quantum information cannot be transmitted through the
noisy quantum channel and if we cannot obtain any classical information, all the quantum
information that the physical system has can be transmitted.

Suppose that we measure some intrinsic observ&iblehaving a discrete spectrum, of
a physical systens, where we denote the projection-valued measure of this observable,
corresponding to the eigenvalueas XS(x) = |¢5(x))(¥5(x)| and the spectral set &5y.
Thus the spectral decomposition is given®y = 3", . xX(x). To perform the quantum
measurement, we first prepare an appropriate measurement appamatdsthen we make
an interaction between the physical system and the measurement apparatus to create some
quantum correlation between them, where the unitary operator which describes the evolution
of the system—apparatus compound system is denotééf'asThe readout process of the result
y shown by the measurement apparatus is described by a positive operator-valued measure
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YVA(y), satisfying the relationd(y) > 0 andy" .o Y4(y) = 14, whereQy is the set of

all possible measurement outcomes. If the quantum state of the physical system before the
interaction with the measurement apparatus is described by a statistical opérated the
measurement apparatus is prepared in a quantumgtatbe quantum state of the system—
apparatus compound system just before the readout of the measurement outcome is given by
P54 = USA (55 @ pA)YUSAT. Then the probability?Z,(y) of the measurement outcomend

the quantum statg; () of the physical system after obtaining the measurement outgome

are given by the following formulae [1-3]:

L3ps
Trs[£558

yPin

Pate(y) = Trs[L3 b pan(y) = @

whereﬁﬁ is the quantum operation of the physical system, which is defined for an arbitrary
operatorO* of the physical system

L3505 =Tra[(1° @ VAT (05 @ s U5, @)

Since we can always exclude the valyalat cannot be obtained by the quantum measurement,
we assume thaPZ,(y) # 0 for all y € Qy in equation (1), without loss of generality.
The quantum operaﬂoﬂi is a trace-decreasing completely positive map and thus it can be
represented in the following form [2]

L30S =3 AS(nO*AS(y) D OASTMAS () < 3
n

n

whereA$ (y) is an operator determined y**, J(y) and 2. This equation is referred to
as the operator-sum representation [4].

When the operator-sum representation equation (3) has only one opéfator; the
quantum operatioﬁi(y) is called an ideal quantum operation [9] or a pure quantum operation
[10]. In quantum measurement processes described by pure quantum operations, the quantum
stateps (y) becomes pure if the initial quantum staig is pure. Pure quantum operations
appear in many quantum measurement processes. In fact, when a measurement apparatus is
prepared in a pure quantum stafe= |¢:) (¢ | and the measurement outconyeis provided
by measuring the pointer observable of the measurement apparatus, we obtain the pure quantum
operation

L3505 = A5(y) 05 AST(y) AS(y) = (@MU i) @

where|g?(y)) is the eigenstate of the pointer observable with the eigenvalliethe rest of
this paper, we confine ourselves to considering the quantum measurement process described
by the pure quantum operation.

In previous papers [11-13], we have investigated the information-theoretical properties of
quantum measurement processes and we have obtained the necessary and sufficient condition
under that the amount of information on the intrinsic observable obtained from the
measurement outcome, can be represented by the Shannon mutual information. The condition
is that the intrinsic observabl&s(x) [or X*] of the physical system commutes with the
operational observable given B,(y) = £5715; that is,

[25(x), Aoy(»)] = 0 (VxeQy VyeQy). ®)

When the quantum measurem?nt process is described by the pure operation, the operational
observable becomeg? op(Y) = AST(y)AS(y). If the relation given by equation (5) holds,
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the amount of information on the intrinsic observable of the physical system obtained by the
guantum measurement is given by

PA
155 ¥ = Y 3 PGPS ) Iog[ﬂ} (6)

A
xeQy yeQy Pgu(y)

where P3(x) = (¢5(x)|p5 195 (x)) is the probability that the intrinsic observable takes a
valuex in the quantum statg$ and the conditional probability (y|x) that the measurement
outcomey is obtained when the intrinsic observable takes a valirethe quantum statg’

is given by

P (ylx) = (@ @IAST (M AS()ly S () (7
which satisfies the relation
Pou(¥) = Y PLGIXPY). ®)
xeQy
Furthermore, we have the relation between the intrinsic and operational observables
AT nAS(y) = Y PAOMAS (). ©)
xeQy

The Shannon mutual informatiah(X; : Y2, given by equation (6) represents how much
classical information on the intrinsic observail&(x) is transmitted from the physical system
before performing the quantum measurement to the observer who performed the quantum
measurement. It is a wellknown fact that the mutual information satisfies the inequality
0< I(X] 1 Y4y < H(X3), whereH (X)) is the Shannon entropy of the intrinsic observable

in the quantum statg; of the physical system, that i (X)) = ", .o P (x) log P} (x).

When we perform the quantum measurement of the physical system and we obtain the
measurement outcomg the quantum state of the measured physical system changes as
P> — p3.+(»). Such a state change is equivalent to a noisy quantum channel described by the
trace-decreasing completely positive nﬁb Thus we can consider the transmission of the
quantum information from the physical system before performing the quantum measurement
to the physical system after obtaining the measurement outcome. The amount of quantum
information transmitted through the noisy quantum channel is quantified by the coherent
information [5—7]. The coherent informatiof (pin, f,g) of the noisy quantum channel

described byS 0 = 3~ A5 (y) 05 AST(y) is given by

éSﬁS
A ASY yFin _ A AS
Ic(poin, Ey) =S (—Trs[ﬁfﬁiﬁ ) Se(Oins Ey) (10)
where S(p) = —Tr[plogp] is the von Neumann entropy anfi(oin, ﬁi) is the entropy

exchange of the noisy quantum channel [4, 7]

Trs[AS (1A AS ()]
Trs[£5p3]

It should be noted that the coherent information can take negative values. Itis easy to see from

equation (11) that the entropy exchan§€pin, Lf,) vanishes in the quantum measurement

process described by the pure operation and the coherent inforniatigg, ﬁf,) becomes

AS(y)p3 A3t (y) )
Trs[AS(») 55 AST()]

Se(pin, £3) = —Tt[W () log W (y)] Wi (y) =

11

12)

Ic(pin, £3) = S(
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which is non-negative. The noisy quantum chanfigis obtained with probabilityP2,(y).
Then it can be proved that the average value of the coherent information satisfies the inequality

Uc(hin. L))y = D PoIc(bin, £3) < S(53). (13)
YEQy
The coherentinformation in the quantum information theory plays the same role as the Shannon
mutual information in the classical information theory does [5-7].

We now consider the relation between the classical informatioey, : Yz, on the
intrinsic observable and the quantum informatikris; , ﬁﬁ) transmitted through the noisy
quantum channel. We first suppose that we obtain the maximum information on the intrinsic
observable of the physical system: namdlgX?> : Yi,) = H(X?) and we cannot obtain
any further information even if we repeat the same quantum measurement since we have
already obtained the maximum information. In this case, the conditional probability becomes
Pe(ylx) = 8, ;) and the operatoA®(y) is given by AS(y) = |5(%)) (¥ (%), where the
function f (x) is invertible andt = f~1(y). This result indicates that the quantum state of the
physical system after obtaining the measurement outgobezomes a pure state

ASMpRASTY)
Trs[AS () A AST ()]
Thus, it is found from equation (12) that when we obtain the maximum information on the
intrinsicAobservabIe of the physical system the coherent information becomes zero: that is,
Ic(p3, Ci) =0.

We next consider the case that we cannot obtain any information on the intrinsic observable
of the physical system: thatis(X3 : Yz, = 0. Inthis case, since the conditional probability
P2 (y|x) does not depend on we obtain the following relation from equation (7) or (9):

Pouy) = = [y S @)Y @) (14)

WS IASTMAS WY () = (WS EIAST(MAS ()Y S (). (15)
Furthermore, we obtain from equation (5) or (9)
WS IAST M AS WY () =0 (x # x). (16)

Using equations (15) and (16), we can calculate the von Neumann esttafy(y)). We first
expand the statistical operataf, as

pa =D Y fE Y @) WS )) 3 fex =1 17)
xeQy x'eQy xeQy
Since we obtain from equations (15)—(17)
Trs[AS () A AST ()] = (W @)IAST (M AS ()Y ¥ (x)) = F(y) (18)

the quantum statgS ,(y) of the physical system after obtaining the measurement outgome
becomes

R AS()pS AST(y) TTINET
— - n _ — , / / 19
Poul) = S B A ] X;H;Xf(x NSNS (19)
with
» AS S 5 5
1350y = 2O s 155wy = (20)

VE(Y)

It is found from equations (17) and (19) that the eigenvalues of the statistical opéfator
are equal to those of the statistical opera?t;ﬁpand thus the equalit§(55 () = S(53) holds.

in
Therefore, when we cannot obtain any information on the intrinsic observable of the physical
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system, the coherent information is equal to the von Neumann entropy of the physical system
in the quantum statg>: thatis,/c (53, LZS) = S(pD).

We now suppose that the coherent informatigns;, £§) vanishes in the state change
caused by the quantum measurement. Since the quantum measurement is described by the
pure operation, the equaliti (55, £S) = 0 means that the quantum stgg,(y) is pure,
namely

S Ast 2 AS(\)AS AST
< S0ARAST () ) __AosATe 1)

Tr[ASMASASTN] ) Trs[AS(ps AST(»)]
Using the relatiomST(») A% (y) = Y, ., P& (v1x) X (x), we obtain from this equation

Y PAOPAOI) IS 0185 1S ()12 (Z PG (WS (0 pinlyr (x)))

XEQy x'€Qx xeQx
(22)

Since the quantum stafg of the physical system is arbitrary, equation (22) should be satisfied
even if the statistical operatgs, is diagonal with respect to the eigenstates of the intrinsic
observable. Thus we obtain

DY PO PO W WIA I )Y @Al () =0 (23)

x,x'€Qx

(x£x")

which means thaP2 (y|x) P/ (y|x’) = 0 (x # x'). Therefore, the conditional probability
can be expressed &' (y|x) = 8y, r(x), Where f(x) # f(x) for x # x’. We see from this
result that the information on the intrinsic observable, obtained by the quantum measurement,
becomes maximum and the equallt@(if] YAy = H(X ) holds.

We next suppose that the coherent information is equal to the von Neumann entropy of
the physical system in the quantum stafe that is, Ic(55, £5) = S(53). In this case,
the quantum channeli becomes reversible, which means that there is a trace-preserving

completely positive mapRS such thaﬂzs(ﬁsp,n/Trs[ﬁsp,ﬁ]) = /3 [5,10]. The condition
of this reversibility is equivalent to that given by equations (15) and (16) [10, 14]. Thus, the
conditional probability? (y|x) becomes independent.of This result means that we cannot
obtain any information on the intrinsic observable of the physical system and the equality
(X5 : Y4y = Ois established.

Therefore, the results that we have obtained are summarized in the following relations:
L(X3 Yo = H(X) <= Ic(p, £3) = 0= (Ic(pin, L))y =0 (24)
T(Xi 1Y) = 0 = Ie(Bip, £3) = S(Bin) <= (Ic(Bin, L)), = S5, (25)
where we have used the inequality equation (13) and the fact that the coherent information
is non-negative for pure quantum operations. If we obtain the maximum information on the
intrinsic observable of the physical system, the quantum information cannot be transmitted from
the physical system before performing the quantum measurement to the physical system after
obtaining the measurement outcome. On the other hand, if we do not obtain any information
on the intrinsic observable, all the quantum information that the physical system has in the
quantum stateé: can be transmitted. Furthermore, it is interesting to note that the relations
given by equations (15) and (16) are equivalent to the necessary and sufficient condition under
which the quantum error correction is possible for the noisy quantum chﬁfnfﬂaﬂ), 14]. The
condition is expressed as '

WS @IASTMAS IS () = 8,0 F(p) (26)
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whereF (y) is independent af. Our results indicate that the condition for the diagonality of
the operatorsT(y)AS(y) is equivalent to that for the existence of the conditional probability
P2 (y|x) of the measurement outconyefor given x in the quantum measurement process.
The fact that the functiof' (y) does not depend onindicates that the conditional probability
P2 (y|x) becomes equal to the output probabiliy,(y) of the measurement outconyein

the quantum measurement process.

We have considered the two extreme cases. One is the quantum measurement in which
the information gain attains maximum and the other is the quantum measurement in which
any information cannot be obtained. To consider the intermediate case, we assume the simple
model of the quantum measurement process. Here we note that the operational and intrinsic
observables satisfies equation (9). Then we assume that the opie?@t@nis given by

Ay =Y PGS ). 27)
xeQy

We first consider the case that the quantum state of the physical system before performing the
quantum measurement is the statistical mixture of the eigenstates of the intrinsic observable,
namely,55 = Y, q. Pn(x)X%(x). Thus we obtain the quantum st (y) after obtaining

the measurement outcorpe

> reqy PAOIX)PS(x) XS (x)

Pout(y) = (28)
o Pzﬁn()’)
Then, the average value of the coherent information is calculated to be
p PL (y|x) Py (x) PA(y|x) P3(x)
(I (/3 s ES)> = — PA (y) [C—mj| |Og|: [ in i|
C\Pins &~y )17y y;y out XGZQX Pcﬁn()’) —Pcﬁjt(y)
= H(Xin) — T (X3 : YA (29)

where the equalit)S(ﬁiﬁ) = H(Xiﬁ) is satisfied. Therefore, when the initial quantum state

of the physical system is the statistical mixture of the eigenstates of the intrinsic observable,
the sum of the averaged coherent information and the Shannon mutual information remains
constant, the value of which is the Shannon or von Neumann entropy of the physical system
before performing the quantum measurement.

(d)

(c)

(b)

(a)

© O O © © O o
. . . . . . .
o N W & U O3

Figure 1. Plots of the average value of the coherent informatia)y the Shannon mutual
information @), the von Neumann entropy)(and the Shannon entropy)(before performing
the quantum measurement, where werset0.8 andd = = /4. In the figure, all the qualities are
measured in bits.
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We next consider the case that the physical system is a%spj;:s{em, where the initial
quantum statg; and the intrinsic observablg® (x) are given by

1 1. gj

s _ (1 +rcosp) 1rsing csoa (10 sy (00

pm_< g S o) M=y o Fh=gy 1
(30)

with 0 < r < 1. The conditional probability’ (y|x) is assumed to be
P I =PI =3A+p) PV =Pt I =20-p (31)

with 0 < p < 1, where we obtain the maximum informatiornpif= 1 and we cannot obtain
any information ifp = 0. Then the operatot®(y) becomes

. Jia 0 . Jia- 0
ASm:( 2P ) AS<¢>=< =p ) (32)
0 NEL D) 0 Jid+p)

After straightforward calculation, we can obtain

I1(X5 . Y4) = H(pr cosd) — H(p) H(XS) = H(r cosd) (33)
I, L) =HOw)  Ic(Bp. LD =HO-)  S(By) =H@)  (34)
(Ic(piy. L)1) = 3(L+ prcosO)H(A+) + 3(1 — pr cosd)H(._) (35)

whereH(x) = log2 — 2(1 +x)log(1 +x) — 3(1 — x)log(1 — x) and the parameters;
andx_ are given byry = /1 — (1— p2)(1—r2)/(1+ prcosh)2. Itis easy to see from
equations (33)—(35) that the Shannon mutual information and the coherent information satisfy
the following relations:
p=0=I(X5:Ya) =0 Ic(py. L) =Ic(Bp. L) = Uc(ps. L)1y = S(BY)

(36)
p=1=1(X}:Ya)=HX3)  Ic(pn. L) = 1c(p. L) = (Ic(Biy. L3 )}y = 0.

(37)
Infigure 1, the several quantities in equations (33)—(35) are plotted as a function of the parameter
p which appeared in the conditional probability. The figure clearly shows that the coherent
information of the noisy quantum channel decreases as the information gain by the quantum

measurement increases. In this case, the numerical calculation shows that the inequality
S(Bip) < L(Xiy = You) + (Ie(Biy, £5))r) < H(X;)) is established.
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